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SUMMARY

A technique for computing the exact marginalized (integrated) Pois-
son likelihood function for counting measurement processes involv-
ing a background subtraction is described. An empirical Bayesian
method for determining the prior probability distribution of back-
ground count rates from population data is recommended and would
seem to have important practical advantages. The exact marginal-
ized Poisson likelihood function may be used instead of the com-
monly used Gaussian approximation. Differences occur in some
cases of small numbers of measured counts, which are discussed.
Optional use of exact likelihood functions in our Bayesian internal
dosimetry codes has been implemented using an interpolation-table
approach, which means that there is no computation time penalty
except for the initial setup of the interpolation tables.
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1 Introduction

Many health physics measurements involve counting, usually in conjunction with
a background count, which is subtracted in some way. The likelihood function
in these cases then involves Poisson distributions (for long decay times). In
most analyses this fact is not used in a detailed way. For example the formulas
given in the ANSI standard HPS13.30 (Health Physics Society 1996) are essen-
tially those obtained using the Gaussian approximation to the Poisson distribu-
tion (Brodsky(Brodsky 1992) argues that this is valid). Recently, the Gaussian
approximation has been challenged in low-level counting situations, and vari-
ous non-Gaussian formulas for the decision level have been proposed.(Strom &
MacLellan 2001) Other treatments of the problem of low-level paired counting
have been given by Little(Little 1982) and Potter(Potter 1999).
The calibration or normalization factor (having dimensions of physical units

per count) has important uncertainties in addition to the counting statistics
uncertainties. In some cases these uncertainties are known to approximately
follow a log-normal distribution (see, for example, (Moss et al. 1969)), and this
would generally seem a reasonable assumption. In this paper we assume the
calibration factor has an arbitrarily large uncertainty that follows a log-normal
distribution.
Optional use of exact likelihood functions in our Bayesian internal dosime-

try codes has been implemented using an interpolation-table approach. This
means that the exact likelihood functions can be used with no computation
time penalty except for the initial setup of the interpolation tables.
In cases with only a few measurements involving low-level counts, we Þnd

that sometimes signiÞcant errors are made using the Gaussian approximation
rather than the exact likelihood function. Such cases will be discussed later on
in this paper.
This paper extends the work of Little(Little 1982) in several important ways.

1) We conceptually deÞne the marginalized likelihood function (taking into ac-
count variability of the calibration factor), which encapsulates the information
content of the measurement. 2) We are able to study the differences between
the exact calculation and the Gaussian approximation of the likelihood function
for internal dosimetry calculations using the present understanding of realis-
tic, empirically determined prior probability distributions. 3) We describe the
interpolation-table computational technique, which makes the exact likelihood
calculations almost equivalent to the Gaussian approximation in terms of com-
putation time. 4) We describe an empirical Bayesian method for determining
the prior probability distribution of background count rates that has important
practical advantages.

2 Review of the likelihood function

A measurement process producing data y (for example, detected counts) is
understood in terms of parameters Θ (for example, sample activity). The prob-
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ability distribution of y given particular values of Θ is assumed to be known
(for example, a Poisson distribution) and is denoted by P (y|Θ) (the vertical bar
is read as �given�). In statistics we are interested in inferring the value of Θ
from measurements y. If the value of y is given (the measurement value), while
Θ is considered a variable, P (y|Θ) is known as the likelihood function, which is
a fundamental statistical function. In classical statistics, the maximum of the
likelihood function is often taken as the estimate of Θ. In Bayesian statistics, the
likelihood function times the prior probability distribution of Θ is proportional
to the probability distribution of Θ given the measurement y. The Þrst step
in interpreting a measurement is, in any case, the evaluation of the likelihood
function.

3 Exact likelihood function for counting mea-
surements

We imagine a counting measurement, where N counts are registered in time
t. With a blank sample, Nb background counts are obtained in background
counting period tb. The true count rate from activity in the sample is λ, while
λb is the true count rate from background. The quantity of interest (for example,
true activity in the sample) is denoted by ψ, and f is the multiplicative factor
(a calibration or normalization factor having the dimensions of physical units
per count) that relates counts to the quantity of interest,

ψ = fλt. (1)

The multiplicative factor is assumed to have a known uncertainty distribution
given by P (f). Given ψ, λb, f , and the counting times, the probability of jointly
obtaining N counts and Nb background counts is assumed to be described by
independent Poisson distributions,

P (N,Nb|ψ,λb, f) = (ψ/f + λbt)
N

N !
e−(ψ/f+λbt)

(λbtb)
Nb

Nb!
e−λbtb . (2)

By Bayes theorem,

P (ψ|N,Nb) ∝
Z
P (N,Nb|ψ,λb, f)P (λb)P (f)P (ψ) dλb df, (3)

where P (ψ) and P (λb) are the (assumed independent) prior probability distri-
butions of ψ and λb. Little(Little 1982) gives a similar formula, except that
he does not include variability of the multiplicative factor. The marginalized
(integrated) �log-likelihood� function L(ψ) is deÞned as

L(ψ) = log
µZ

P (N,Nb|ψ,λb, f)P (λb)P (f) dλb df
¶

(4)

and is a fundamental quantity in the interpretation of the measurement.
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This problem is somewhat confusing in that two prior probability distribu-
tions are potentially involved, one on the true background count rate λb, which
we consider, and another on the true quantity of interest ψ, which we do not con-
sider, instead separating out the determination of the marginalized likelihood
function from the full inference problem.
Note that, strictly speaking, Eq. 4 is not a likelihood function because of the

integrations involved. Equation 4 is a natural generalization of the likelihood
function in the case of no background and no uncertainty of the calibration
factor. Within the Bayesian context of this paper the marginalized likelihood
function encapsulates the entire information content of the measurement of ψ
for subsequent use, whether Bayesian or Classical, just as a likelihood function
does. The problem of inferring ψ might be done Classically (for example using
the maximum likelihood method) without requiring a prior on ψ. Naturally,
we would argue that a better approach would be to use the prior probability
distribution of ψ to calculate the posterior probability distribution of ψ.
The prior probability distribution of background counting rate λb is assumed

to be given by the (conjugate) Gamma distribution,(Little 1982, Martz 2000)

P (λb) =
βα

Γ(α)
λ

(α−1)
b e−βλb , (5)

with Γ(α) the gamma function

Γ(α) =

Z ∞

0

xα−1e−x dx. (6)

The gamma distribution allows a large range of possibilities. For example, if
α = 1/2 and in the limit of β → 0 we obtain an improper prior that is pro-
portional to λ−1/2 (known as Jeffrey�s noninformative prior for the Poisson
distribution).(Robert 1997, Martz 2000) The term �improper� refers to the fact
that the distribution has a divergent normalization integral, which is often irrel-
evant in Bayesian analysis. If α = 1 and again taking the limit β → 0 produces
another improper prior, a constant, called the �ßat prior�, which is commonly
used. In this paper we recommend that the prior parameters α and β be deter-
mined empirically from data, which results in values of α > 1 and β > 0. The
peak (mode) of the gamma distribution occurs at (α − 1)/β. For β large the
Gamma distribution is narrow, and conversely.
The probability distribution of multiplicative factor f is assumed to be log

normal,

P (f) =
1√
2πσff

exp(− 1

2σ2
f

(ln
f

f0
)2), (7)

with median value f0 and (geometric) standard deviation σf . Making the change
of variables

f = f0e
φ, (8)

then φ has a normal distribution centered at 0.
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The log-likelihood function consists of the following double integral (ignoring
an additive constant),

L(ψ) = log

ÃZ ∞

0

dλb

Z ∞

−∞
dφ e

− φ2

2σ2
f

(
ψ

f0
e−φ + λbt)Ne

−( ψ
f0
e−φ+λbt)[λb(tb + β)]

Nb+α−1e−λb(tb+β)

¶
. (9)

Our numerical method for evaluating Eq. 9 is straightforward summation using
Monte Carlo generation of λb from a Gamma distribution and φ from a normal
distribution.(Press et al. 1986)

4 Gaussian Approximation

A Gaussian probability density function with mean x0 and standard deviation
σ is of the form

P (x) =
exp

³
−(x−x0)2

2σ2

´
√
2πσ

(10)

The Gaussian approximation to the exact likelihood function results from the
fact that

xne−x ≈ const× e− 1
2n (x−n)2

(11)

for n large. Using this relationship and the fact that the convolution of two
Gaussians is again a Gaussian one Þnds that

L(ψ) ≈ −1
2

"
(y − ψ)2
σ2
y(ψ)

+ log(σ2
y(ψ))

#
, (12)

for N and Nb + α− 1 sufficiently large, where

y = f

∙
N − Nb + α− 1

R

¸
σ2
y(ψ) = f2

∙
N +

Nb + α− 1
R2

¸
+ (σfψ)

2, (13)

using the notation

R =
tb + β

t
. (14)

In Eqs. 13, if α = 1 and β = 0, one recognizes the net counting rate N/t−Nb/tb
in y and the familiar components of the total uncertainty variance associated
with gross counts, background counts and multiplicative uncertainty in σ2

y(ψ).
By comparing with the exact log-likelihood function given by Eq. 9, we can
establish how large N and Nb + α− 1 need be for the Gaussian approximation
to be valid.
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Figure 1: Comparison of exact and Gaussian approximation for the likelihood
function, for a case with 10 counts and 3 background counts.

For α = 1 and β = 0, the Gaussian approximation has an obvious difficulty
when N = Nb = 0, giving σ2

y(0) = 0 (implying a perfect measurement). To
avoid this problem, we redeÞne the Gaussian by the replacement

N +
Nb + α− 1

R2
→ 1, (15)

in Eq. 13 for σ2
y whenever the left hand side of Eq. 15 is less than 1. Rather

than such an ad hoc procedure, we prefer the Empirical Bayes determination
of α and β described in the next section, which results in values of β > 0 and
α > 1, avoiding this problem in a natural way.
It turns out the Gaussian approximation is surprisingly accurate, even for a

fairly small number of counts. For example, Fig. 1 shows a comparison between
Eq. 12 and Eq. 9 for 10 counts and 3 background counts with the ratio of
background count time to count time R = tb/t = 6, calibration factor f = 1 with
small uncertainty σf = 0.1. A ßat prior probability distribution of background
count rate is assumed ( α = 1, β = 0).
As a practical example of the use of the exact likelihood function, consider

a hypothetical radiochemical alpha spectrometric (RAS) measurement of plu-
tonium in urine, assuming f = 0.15Bq/d per count (corresponding to a typical
RAS calibration factor), and R = 6. The likelihood functions are as shown in
Fig. 1. The measurement is assumed to be one year after the preceding bioassay
sample. Figure 2 shows the posterior distribution of committed effective dose
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Figure 2: Comparison of exact and Gaussian approximation for the cumulative
posterior probability distribution of CEDE. A single 239Pu RAS urine bioassay
measurement giving 10 count and 3 background counts taken one year after the
preceding sample is assumed.
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Figure 3: Shaded contour plot representation of the comparison of exact and
Gaussian approximation for the cumulative posterior probability distribution of
CEDE.

equivalent (CEDE) calculated using the method described in ref. (Miller, Martz,
Little & Guilmette 2001), assuming an �alpha� prior on intake amount, with
α = 0.001 y−1(Miller, Inkret, Little, Martz & Schillaci 2001). The ICRP-30
family of biokinetic models are used. The calculated CEDE is quite different in
this case. The reason for this disagreement is that the exact likelihood function
is zero at ψ = 0 while the Gaussian approximation is not. If the likelihood func-
tion is nonzero at zero, the alpha prior weights the posterior strongly toward
zero dose.
Figure 3 shows a contour plot representation of the cumulative posterior

probability distributions shown in Fig. 2. The darker areas of the plot are near
the median probability, and the shading extends out to the 5% and 95% credible
limits. This type of graphical representation was developed to more effectively
communicate the idea of dose uncertainty to the workers.
We deÞne the quantity r = CEDEGaussian/CEDEexact, which is the ratio of

the expectation value of CEDEs (note that expectation value is the same as
mean or average value) calculated in the two ways assuming a single bioassay
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measurement. Instead of CEDE we could equally well assume any calculated
quantity of interest. Table 1 shows values of r for small numbers of counts
and different values of R = tb/t (small values of R typically pertain to in vivo
measurements with a subtracted body background). Small calibration factor
uncertainty σf = 0.1 is assumed. The �alpha� prior on intake amount is as-
sumed, with α∆t = 0.1(Miller, Inkret, Little, Martz & Schillaci 2001). The
counts N and Nb are 0, 1, 2, 3 in all possible combinations. The average r is
shown together with the minimum and maximum values. Table 1 shows some
cases of substantial disagreement for R small.

Table 1: Ratio of quantity of interest calculated using Gaussian likelihood to
that using exact likelihood, r, as a function of the ratio R of background to
sample count time.

R r∗average min (N,Nb)
� max (N,Nb)

�

6 0.79 0.48 (3, 0) 1.38 (0, 0)

1 0.77 0.46 (3, 0) 1.06 (0, 3)

1/6 3.54 1.37 (0, 0) 6.29 (0, 3)

∗ average for N , Nb in {0,1,2,3}
� minimum or maximum attained at (N,Nb)

5 Role of the prior probability distribution

The prior probability distribution P (λb) summarizes additional information we
may have about the background count rate λb before making the background
measurement. Using the gamma function with parameters α and β, the prior
distribution has expectation value (mean) α/β and variance α/β2.(Rothschild
& Logothetis 1986) The peak (mode) of the gamma distribution occurs at (α−
1)/β. For β small the Gamma distribution is broad, which corresponds to
assuming that we have little knowledge of what the value of λb might be (other
than that it is positive). A commonly used limit of parameter values is α→ 1,
β → 0, which results in a very broad (ßat) prior. The interpretation of this
choice will be discussed later on.
It is also possible to use population data to determine α and β. This is prefer-

able because more relevant information is used in interpreting the measurement.
For a representative set of background count data, the observed distribution of
measured counts is given by the following convolution integral:

P (Nb) =

Z
P (Nb|λb)P (λb) dλb, (16)

where P (λb) is the prior probability distribution (the distribution of λb in the
measured population), and P (Nb|λb) is the Poisson likelihood of measuring Nb
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Figure 4: Distribution of 239Pu background counts together with Þt assuming
a gamma-function prior.

background counts when the true background count rate is λb. Assuming a
gamma prior distribution,

P (Nb) =
Γ(α+Nb)β

αtNb

b

Nb!Γ(α)(tb + β)α+Nb
. (17)

That this convolution integral exists in closed form (provided β > 0) shows the
usefulness of assuming a gamma prior distribution with a Poisson likelihood
function.(Martz 2000)
Figures 4, 5, and 6 show population data for the frequency distribution of

background counts for α-particle energy spectrometry in the 239Pu, 238Pu, and
242Pu energy regions.
Nonlinear Þts to these distributions were obtained by minimizing χ2 given

by

χ2 =

MX
j=1

(Nj −NP (Nb(j)))2
σ2
j

, (18)

where Nj is the number of cases that have background counts Nb(j), N is the
total number of cases, and P (Nb) is given by Eq. 17. The uncertainty σ

2
j was

assumed to be given by the Poisson variance, except that it is not allowed to be
zero when the background counts are zero.

σ2
j = max(Nj , 1). (19)
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Figure 5: Distribution of 238Pu background counts together with Þt.
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Figure 6: Distribution of 242Pu background counts together with Þt.
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The Þt results are summarized in Table 2. The quantity χ2/NDF is meant as a

Table 2: Results of Þts to background count data.

Nuclide Number cases∗ (α−1)
β tb

� β/tb χ2/N �
DF

239Pu 2307 3.64 2.71 0.98
238Pu 2307 2.58 2.20 0.89
242Pu 2307 6.72 5.35 0.57

∗ counting period t
� most probable number of background counts in count period tb = 6t
� this quantity should be less than about 1 for a satisfactory Þt�see text

measure of goodness of Þt, where NDF (�number of degrees of freedom�) is the
number of data minus the number of Þt parameters. This quantity should be
about 1 or less for a satisfactory Þt, as is true for all these cases.
The quantities α and β have a simple-to-understand qualitative interpre-

tation. If, instead of using an informative prior deÞned by given, postulated,
values of α and β, the measured background counts had been Nb + α− 1 for a
counting period tb + β, the result, using a ßat prior, would be the same. Thus
α − 1 behaves like background counts, and β behaves like background count
time. The ßat prior (α = 1, β = 0) is then like the limit of measuring 0 back-
ground counts in 0 time. The quantity β being large is equivalent to counting
the background for a long time, and the background count rate is then well
known.
If β is large compared to tb, the prior overwhelms the background count

data. Note that if the background count rate is truly variable in the population,
the value of β will be small, and the background measurement will tend to be
more important than the background prior.
A software package (BKGRND)(Miller & Little 2001) is available from the

authors to enable the reader to carry out these and similar calculations using a
supplied database of actual plutonium RAS background count data. By vary-
ing the size of the dataset and combining background count data over multiple
counting periods one Þnds that (α− 1)/β, the peak (or mode) of the distribu-
tion, is relatively well determined but differing values of β are obtained. Thus
the Empirical Bayes method is not entirely straightforward. We recommend
conservatism in not allowing the Þtted value of β/tb to be larger than some
limit (for example β/tb = 2). This means that we do not allow very narrow
priors, such that the background count data is completely unimportant. The
ratio of (α− 1)/β is kept constant if β is decreased in this way.

6 Discussion

A method for using the exact marginalized (integrated) likelihood function for
Poisson measurement processes involving a background subtraction has been
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described. The exact marginalized likelihood function may be thought of as
summarizing (within a Bayesian context) the full information content of the
measurement. This exact likelihood function may be substituted for the com-
monly used Gaussian approximation in either a Bayesian or hybrid Classical
subsequent analysis in order to make inferences from the data.
The Gaussian approximation is surprisingly accurate, but differences occur in

some cases of small numbers of measured counts. We have discussed such cases
involving internal dosimetry in Sec. 4 where there are signiÞcant difference in the
committed effective dose equivalents inferred from single bioassay measurements
using the two methods.
The mathematics seems rather complex, and one might ask how such difficult-

to-evaluate expressions could be useful in practice. It is important to realize that
the likelihood function for each measurement can be summarized once and for
all as a numerical table with a fairly small investment of computation time.
Further analysis can then be done by interpolating values from these tables,
which can be done about as fast as the Gaussian approximation can be eval-
uated. We have taken the interpolation-table approach in incorporating use
of the exact likelihood function as options in our Bayesian internal dosimetry
codes UF(Miller et al. 1999) and ID(Miller, Martz, Little & Guilmette 2001).
Computation time is a limiting factor with the ID code for a single case and
with the UF code for thousands of cases, and much of that time is taken up
evaluating marginalized log likelihood functions. Having to repeatedly evaluate
the multiple integrals of Eq. 9 without using interpolation tables would be out
of the question (tens of thousands of times slower). The setup time for the in-
terpolation tables is typically on the order of a minute (for a case involving tens
of data points and a 1 GHz Pentium processor). That time is long enough that
the Gaussian approximation is still handy to use. It has been proposed that
analysis laboratories report exact marginalized likelihood functions in tabular
form as part of their �product delivery�,(Miller & Little 2001) in which case we
could dispense with the Gaussian approximation entirely.
We have chosen not to attempt to reÞne the deÞnition of decision levels

and MDA(Health Physics Society 1996) based on this work. The use of a de-
cision level itself seems problematical in that it may in practice lead to loss of
measurement information. For example, a number of sequential measurement
results might be reported as �below decision level� with no action or further re-
porting of data, while the posterior probability based on all the measurements
(combined by adding their log-likelihood functions) might indicate a need for
action. It actually seems conceptually and operationally simpler to us (in this
era of desk-top computers) to just calculate the posterior distribution of the
quantities of interest using all the data (by an appropriate mouse click) and
to make decisions (for example to declare �positive� or to resample) based on
examining the posterior probability distribution.
The Empirical Bayes methodology for count background subtraction (deter-

mination of true background count rate) proposed here has important practical
advantages: 1) more information is utilized (the historical distribution of back-
ground measurements) producing a higher quality measurement result, 2) ad-
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hoc methods for dealing with the zero count problems are avoided, and 3) the
quantities α and β obtained in the empirical Bayes analysis of the background
count distributions are useful in quality control (small β indicating variable
background count rates and possible problems).
Finally, it is very important that count measurement data be recorded in

such a way that the full information content is not diminished. This is an
obvious and simple requirement, often not satisÞed. One way of doing this is
to record counts N , background counts Nb, the ratio of background count time
to count time R, calibration factor f , and σf , treating y and σy of Eq. 13 as
secondary quantities.
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